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1. Elementary knot theory, a brief introduction

The theory of knots has had constantly waxing aadimg popularity
The popularity knots ha enjoyed is most likely due to thedt that knot
theory really is the theory of knots: twisted and linked pieces of string.
Also knots were a proving ground for a lot of the earbriknin topology
The central question of knot theory is "when d® tiagrams represent
the same knot?To answer this question we first must define some terms.

A knot is alvays a piece of string with both ends attached (if the
ends were not attached there would be no thesrgy pece of string can
be stretched straight, but not all knots are \elemt to a simple loop).
The first point to be made is that all knots discussed here will be "tame
knots". A"tame knot" is a piece of string that has only a finite amount of
twisting. Tameness is a property shared by all knots tied in actual string
(since all real string has non-zero thickness and finite length). The mathe-
matical way to approach this is to study only knots that are built by con-
necting a finite number of line segments (when altering a knot we treat
these as not being able to pass through each otherand Hackness) in
3-space (this is also called a simplicial approximation). Suchfastihi-
tion of a knot has the additional ahtage that it is easy to era dagram
representing the knot. The knot in 3-space is simply projected onto a
plane. Theresulting shadw is then a collection of line segments (some
possibly crossing) Now since the knot is made of a finite humber aj-se
ments it is easy to see that there are only a finite number of points on the
projection where lines cross, it is also true that with a slight change in the
angle of the projection we can break a crossing thafvies 3 or more
line segments into seral crossings wolving only 2 line sgments. Fur
thermore, sincewverything is finite, it is alvay possible to find a projection
such that all crossingsvalve oly 2 line sgments. Theserossings can
then be drawn such that we can see which segment passes under which.
An example of the diagram of a simple knot, called the trefoil, can be seen
on the left. It is customary to ignore the fact that knots are polygons and
draw the figures in the more relaxed fashion of the one on the right.
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As we said the central question is determining whemdagrams repre-
sent the same kno# concrete example would be to peothat one of the
following diagrams is equalent to the trefoil pictured ale and that one
is not.

(0

The knot on the left can be deformed (without allowing pieces to pass
through each other) into the trefoil in three steps (illustratedMelRei-
demeister preed that two diagrams represent the same knot if and only if
they could be deformed into one another using his 3 different types of

DRAFT



Reidemeister mees (and their iverses). Theanoves ae demonstrated as
we fix the trefoil. First the string is pulled/&@ a aossing (Reidemeister
move rumber 3) then the string is pulledf a@hother string (Reidemeister
move rumber 2) and finally the spurious loop is resbfrom the string
(Reidemeister mae rumber 1).

AV IQIISY

Two diagrams that can be deformed into each other obviously represent
the same knot (since none of the Reidemeisteremeequire a piece of
string to pass through another piece of string) but the usefulness of these
moves is that Reidemeister pved that two diagrams represent the same
knot only if they can be deformed into one another with the Reidemeister
moves. Thistheorem allows us to study knots without using &pology.

In fact knot theory can be reduced to a grammar problem in theviiagjo
manner: Firstlabel the n crossings in avgnh knot diagram with the
labels 1 through n.Then mark an arbitrary (but consistent) directional
arrov on dl of the string and gie each crossing a sign of "+" if the top
string would be to point to the right if you were standing on the crossing
facing in the direction of the bottom string, elseeghe crossing a sign of

"-". Signedcrossings are demonstrated below:
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Now walk along the knot one time and each time you encounter a crossing
call out the sign, the label, and whether you are on the top or boitein le
Thus the following knot could be marked as shown and would yield the
sentence: "+ldown to +2up to +3down to +4up to -5down to -6up to
+4down to +3up to +2down to +1up to -6down to -5up”.

Then the Reidemeister wmes could be rephrased as some kind of crinte
sensitve gammar Unfortunately like many grammar problems, no algo-
rithm is known for generating a sequence of Reidemeisteesio rans-
form one knot into anotherAnd because the number of crossings do not
help determine an upper bound on the number of Reidemeister transforma-
tions required brute force searching is not dactife method (it merely
shaws that the problem of determining if dwdiagrams are knot-isotgp
problem is no harder than the halting problem, which is not saying much).
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Despite this the Reidemeister was ae very useful in knot thearyThe
most common use of them is tovdep invariants. Maly papers present
algorithms that gien a dagram calculate a polynomial from that diagram.
If the method of calculation is urfatted by all 3 Reidemeister ves
then it is easy to see that ifawdiagrams hee dfferent polynomials the
do indeed represent thfent knots (though the cease is often not true,
nobody has yet found a simplevaniant that prees dagram equialence).
Marny polynomials are able to ddrentiate the trivial loop from the trefoil.
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2. Design objectives

The design objeates for knotEd were to supply the user with an easy
way to draw and alter a knot. By drawing a knot we mean to enter a knot
into the computer in such aay so that the user can control the appearance
and at the same time the computer understands the semantics of the knot
being dravn. Thisis the main point of departure for knotEd from graphic
editors like gremlin, xfig and others. If the software knows what knot the
user has dran it can automatically generate the sentence describing the
knot (as discussed in section 1) which can then Bntaito programs that
automatically calculate variants. For a human to generate the sentence
from a diagram is both tedious and error prone and/rofthe algorithms
for calculating ivariants require time exponential in the number of cross-
ings in a diagram. Programs to calculatearrants (and other things)
from a sentence kha keen deeloped by seeral graduate students and
professors of the Uwersity of California at Ber&ley. knotEd has been
used in conjunction with geral of them. It is the intent of the author that
if knotEd is released to the mathematics community that it shouldrbe b
dled and integrate with these programs (some of the algorithms are
extremely sophisticated). Another feature that couldriege of a pro-
gram that kne what knot a uses’ dagram represented is an idea call an
isotopy lock. Auser could actete the lock and from then on the program
would only allowv alterations to the knot that were obviously reducible to a
sequence of Reidemeister ves. Thusthe knot editor could be used as an
intelligent chalk board for educational purposes, or if the used s of
the intermediate diagrams the editor could automate some aspects of
demonstrating the eaqulience of tvo knots. Thusan automated illustrator
would lead to a semi automated theoremvprdin the limited realm of
knot theory). Additional applications esioned for the knot editor
include aiding in the preparation of papers (all diagrams in this paper were
produced by knotEd) and also as a teaching aid.

The biggest questionas hav the program should interact with
the user Seveaal different operating metaphors were considered, the one
finally settled on we call "non-gkical". Thisname is devied from the
fact that mawg of the models brought forthvnlved realistic 3 dimensional
perspectie and plysics. Oneof the most popular with the electrostatic
model where a knot would be thought of as being a collection of rigid
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tubes sitting in 3-space with balls whereytheined. Theballs would

carry electrostatic charges and the tubes ends cowe mound on the
surface of the balls. The configuration would thernvenaound or "relax"

until it had reached the lowest energy configuration and would thus (when
dravn in perspectie) give a "pleasant” looking knot. The user could
change his vi@ point and alter the knot by removing a sequence of tubes
and replacing them with anothefhe major drawbacks of this/potheti-

cal model were the computation, the difficulty the useulad encounter in
specifying a path in 3-space and the dependence on so much of knot the-
ory on actual diagrams. As discussed in section 1 a knot is reduced to a
sentence by examining the crossings on its diagram. But a knot sitting in
three space has no crossings, the lines appear to cross on our 2 dimen-
sional projections but wer cross in 3-space. It was felt that with the
given resources it would be impossible to implement such a model and to
do so vould be contrary to v knots are thought of in mathematics (thus
making the program a burden instead of a tool).

Another model consideredas a tvo plan model. Again the knot
would be thought as ball and pipefaaf but this time all of the pipes
would be trapped in ta planes (one slightly alve the other) with erti-
cal rods connecting the pipes in thetganes. Thaiser would then spec-
ify which pipes were to be attached where. This combined a physical real-
ization of knot in 3-space with the diagrams because the program could
associate a unique diagram with the tutrks by viewing the knot from
above. This model does not seem tovhaany najor defects except that
specifying pipes could become quite tedious.

The model selectedag dewed by reading numerous books and
articles on knots and observingvhdiagrams were drawn freehand and
what properties of diagrams were actually used in theorems. As alluded to
before the 3-space realization of a knot is of little use whanking on a
knot. Theimportant relationship is not between a diagram and its 3-space
realization it between the diagram and its sentence. The diagram should
sere as an @ in altering the knot sentence. In keeping with this the knot
is realized in knotEd as a graph withrtices that all join either 2 or 4
edges. The valent vertices are called control points (the user may add,
delete or mee them around) and the 4 valent vertices are the crossings
(they can be thought of as vertices thavéadditional state information as
to which edge passevas and which edge passes under). The user can
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remove, move, or replace ay sequence of control points and the program
will then automatically place the crossings in the correct locatidhen

the program tries to associate thes& nmssings with the one in the pre-
vious knot so that tlyecan inherit the state (which edge is up etc) from
them. Theuser can imaging that the edges are passweg and under
(like in the pipe model) but is not troubled about details in fitting them
together.

What the user actually sees whilerking is exactly lile the dia-
grams in this paper (knotEd is a what you see is what you get program).
Though the user can turn on additional display features (such as marking
control points, etc). The redrawing shows a knot as the user of the pro-
gram might see it while working on it. The boxes represent the control
points and the dotted lines represent the actual lines of the diagitzan.
knot is based 6these lines and not the smooth @sbecause finding the
intersections of these curvesowd involve lving simultaneous 3rd
degree polynomials (possibleubextremely messy). As you can see the
program often generates a handsome diagram from a small number of con-
trol points.
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3. Implementation

The program s conceied by Rofessor David Goldschmidt of the
Berkeley mathematics department during a demonstration by the author of
a previous X application.The author then proceeded to design and imple-
ment the program under the direction of Professor Goldschmidt and with
the approa of Professor Richard &eman who had referred the author to
Professor Goldschmidt. Theullx of the work was done during the Spring
1988 semester.

The tools originally wailable included Sun 3/50 avkstations
with  monochrome monitors and X version 10. The diagrammatic
approach taken fitery the mouse dren workstation very well. X was
chosen wer SunTools (another winde manager used on the math depart-
ment machines) because of the portability enjoyed by X applicatidns.
deep concern in the implementatioasahat while may of the mathemat-
ics graduate students anactlty regularly used the Sun 3/50 computers
they used them mostly for text processing and typesettiith this in
mind much care was takio 'bullet proof’ the program. All signals are
trapped and ansort of catastrophic termination of the program results in
the users work be gad in a 'panic file". The prototype wouldven log
the disaster and its circumstances in a record file in my account and mail
the user a letter describing whereytlweuld find their seed work. The
log file has since been rewsal ance it was considered intruwsi though it
did allow the author on seral occasions to approach users with "the pro-
gram booted you out last night, what went wrong?"

The program has since been changed into an X11 application (the
X10 version will be allowed to die) and has been expanded to include
color support.This feature is especially useful when dealing with multiple
knots that are tangled togeth#rough the program is fully functional on
monochrome workstations.

The original hardcop was produced by emitting ektronics
draving commands and filtering these through a Postscript translator
This cumbersome method was used instead of dumping a bitmap image of
the screen to makthe image independent of the resolution of the screen
(since most monitors are nowhere near the 300 dots per inch pixel density
that is common in laser printers) and actually turned out to be a
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tremendous performance impement wer dumping bitmaps. The dna

ings in this paper were emitted directly from the program as PIC com-
mands which were then typeset (along with this text) by. trixéiditional

back ends are planned. The hardcopodel was made purposefully
"stupid”; the program requires only operations towdnardcoypy: theabil-

ity to drav a line segment and the ability to draext at a gven location.
Erasure is not used to @vahe undercrossings.

The isotoy lock is based on a natural generalization of the Rei-
demeister mees. The reader certainly noticed that the Reidemeister
moves took three steps to straighten the mangled trefoil, where simply
erasing the area in question and redrawingoitilel obviously hee been
legd. Infact it is easy to see that all three Reidemeistereshcan be per
formed by erasing a segment of a knot thaolires either crossings that
are entirely wer or crossings that are entirely under and redrawing the se
ment agwhere constrained only that it must be entirelgrcor entirely
under the rest of the knot (depending on if @#svoriginally eer or under,

a £gnent that didrt'cross can be redrawn entirelyep or entirely under)

or such that it does not cross the rest of the knot at all and that it does not
cross itself. Since this me is dearly legd and is able to generate the
Reidemeister maes we e that it is necessary and sufficient to generate
(by repeated application) alldd knot transformationsEvery time the
user alters a knot the isotopock (if actvated) checks that the replaced
sggment meets the abe aiteria (actually it relaxes the criteria a little in
allowing the replaced genent to ignore trivial self crossings of the type
showvn in the Reidemeister 1 m@). This method was chosen almthe
method of pointing at a crossing and specifying what Reidemeistex mo
to perform because the Reidemeistevesoae in no way natural (tlye
were contived to prove theorems) and this method of altering the knot
would require that the editor % exensve routing capabilities to dva

the nev segment so that it did not introduce spurious crossings. Also for a
mathematician working on a chalk board thewéagls over or dways
under" rule appears to be the oneythetually use. Thus knotEd auld
have dlowed the user to fix the example trefoil in one step.

The smoothed curves are actually based amdiferent spline
models. Thdirst model treats each line segment as a parameterized arc in
3-space and fits wv3rd degree polynomials to generate the eurfhe
polynomials are determined such thatytmeatch value at the endpoints
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and such that the dedtive & each endpoint is a line parallel to the line
sggment formed by drawing a line form the control point preceding the
endpoint to the control point succeeding the endpoint (this method of
determining the devétives was inspired by memories of the meaiue
theorem for dewiatives from freshman calculus). The endpoints of the
smoothed cum ae allowed to miss the control points (fhean go to a
point determined by the weightedeeage of the control point and its aw
immediate neighbors) but thenust hit the crossings (since we domnish

to determine where the splines would cross we force it) though the bottom
string alvays stops drawing just before a crossing.

The second model is again a Hermetian spline and picks its
derivatives in the same way the first one does. Théedénce is that this
model insists on hitting all control points and that it fits only one polyno-
mial. Thisis done by rotating the line segment to be splined so that it is
horizontal. Inthis configuration it is not necessary to parameterize and y
can be a function of xThe spline is then rotated back into the proper ori-
entation. Thesecond model has the advantage that it does net Hil®
splines to cross their selves (fhmay still spuriously cross each other if
draw too close) or to form cuspsthis model has the disadvantage that a
division is used to compute the detive ( celtaY/deltaX ) so if deltaX (in
the rotated perspeet) is gnall the dewative @an become xxessiely
large (causing the cuevto un avay). Therun avay can be cheakd by
inserting an extra control point.
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4. Futuredirections

Some plans for knotEd include:

1) Performance enhancement. Thoaitine find_cross checks edges that
are already knen not to crosswery time it is called. It could keep track
of this and reduce the time complexity of the routiMany other calcula-
tions could be impneed.

2) Kirby Calculus and other difficult operations should be done by the
editor This way the user benefits in (hopefully) three ways where he uses
knotEd: basimperations are easgperations are all checked forghiity
(isotopy lock) and compbeoperations are entirely automatic.

3) Theability to merge tw sored knots into one. The data structures rely
hearily on the absolute location of records in an array (this made
find_cross INFINITEL easier) so a little code would be needed here.

4) Machineindependent storageCurrent method of storing knots uses
fwrite to write out records this is machine dependent and unreadable to
both humans and other programs. Some simple grammar wouldfbe suf
cient for this task.

5) More methods of getting hard cgp Currently hardcop comes only
through Tektronics format or saving the screen to a file. The ability to
draw in PostScript, MetaFont, or some grammar would be nice.

6) Smarteredrav. Currently we update the whole screen. The ability to
redrav portions would impree performance and cut down on agng

flicker.

7) Moreknot theory Actually have the program try to reduce knots into a
simpler form.

8) More calculations wailable. Calculatingsoftware (ala Goldschmidt,
Walker, and Baxter) ma& knotEd more useful (and vise versa).
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9) More knots. Somebody don’'t havethe time at the moment) should
sit down with Rolfsers knot theory and dra al the knots in the appendix
into the knot library.

10) knotEd ported to other machines. This should be easy as the program
| based knotEd on ported easily.

12) Some decent documents.
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